Relationship between elastic modulus and stiffness

Young's modulus - Wikipedia

relationship between elastic modulus and stiffness

Young's modulus or Young modulus is a mechanical property that measures the stiffness of a solid material. It defines the relationship between stress (force per. I was in the process of responding when I saw Alexandre's comment - he's absolutely correct. Stiffness is a structural property, influenced by the geometry of the. The modulus of elasticity (= Young's modulus) E is a material property, that 39 Graphical relationship between total strain, permanent strain and elastic strain . permanent strain trvalá (plastická) deformace slope směrnice stiffness tuhost.

Young's modulus is also used in order to predict the deflection that will occur in a statically determinate beam when a load is applied at a point in between the beam's supports. Other elastic calculations usually require the use of one additional elastic property, such as the shear modulusbulk modulus or Poisson's ratio.

Any two of these parameters are sufficient to fully describe elasticity in an isotropic material. Linear versus non-linear[ edit ] Young's modulus represents the factor of proportionality in Hooke's lawwhich relates the stress and the strain.

Relationship between Hardness and Elastic modulus?

However, Hooke's law is only valid under the assumption of an elastic and linear response. Any real material will eventually fail and break when stretched over a very large distance or with a very large force; however all solid materials exhibit nearly Hookean behavior for small enough strains or stresses.

If the range over which Hooke's law is valid is large enough compared to the typical stress that one expects to apply to the material, the material is said to be linear.

relationship between elastic modulus and stiffness

Otherwise if the typical stress one would apply is outside the linear range the material is said to be non-linear. Steelcarbon fiber and glass among others are usually considered linear materials, while other materials such as rubber and soils are non-linear. However, this is not an absolute classification: For example, as the linear theory implies reversibilityit would be absurd to use the linear theory to describe the failure of a steel bridge under a high load; although steel is a linear material for most applications, it is not in such a case of catastrophic failure.

In solid mechanicsthe slope of the stress—strain curve at any point is called the tangent modulus.

relationship between elastic modulus and stiffness

Typically the bulk modulus softens near a phase transformation but the shear modulus does not change much. The Poisson's ratio then decreases in the vicinity of a phase transformation and can attain negative values.

Phase transformations are discussed further on the linked page. Poisson's ratio, waves and deformation The Poisson's ratio of a material influences the speed of propagation and reflection of stress waves. In geological applications, the ratio of compressional to shear wave speed is important in inferring the nature of the rock deep in the Earth.

relationship between elastic modulus and stiffness

This wave speed ratio depends on Poisson's ratio. Poisson's ratio also affects the decay of stress with distance according to Saint Venant's principle, and the distribution of stress around holes and cracks. Analysis of effect of Poisson's ratio on compression of a layer.

What about the effect of Poisson's ratio on constrained compression in the 1 or x direction?

relationship between elastic modulus and stiffness

Constrained compression means that the Poisson effect is restrained from occurring. This could be done by side walls in an experiment.

Relation b/w modulus of elasticity and modulus of rigidity

Also, compression of a thin layer by stiff surfaces is effectively constrained. Moreover, in ultrasonic testing, the wavelength of the ultrasound is usually much less than the specimen dimensions. The Poisson effect is restrained from occurring in this case as well.

Young's modulus

In Hooke's law with the elastic modulus tensor as Cijkl we sum over k and l, but, due to the constraint, the only strain component which is non-zero is e Let us find the physical significance of that tensor element in terms of engineering constants. One may also work with the elementary isotropic form for Hooke's law.

relationship between elastic modulus and stiffness

There is stress in only one direction but there can be strain in three directions. So Young's modulus E is the stiffness for simple tension, with the Poisson effect free to occur.

The physical meaning of Cis the stiffness for tension or compression in the x or 1 direction, when strain in the y and z directions is constrained to be zero. The reason is that for such a constraint the sum in the tensorial equation for Hooke's law collapses into a single term containing only C The constraint could be applied by a rigid mold, or if the material is compressed in a thin layer between rigid platens.

Calso governs the propagation of longitudinal waves in an extended medium, since the waves undergo a similar constraint on transverse displacement.

Stiffness - Wikipedia

Therefore the constrained modulus Cis comparable to the bulk modulus and is much larger than the shear or Young's modulus of rubber. Practical example - cork in a bottle. An example of the practical application of a particular value of Poisson's ratio is the cork of a wine bottle. The cork must be easily inserted and removed, yet it also must withstand the pressure from within the bottle.

Rubber, with a Poisson's ratio of 0. Cork, by contrast, with a Poisson's ratio of nearly zero, is ideal in this application. Practical example - design of rubber buffers. How does three-dimensional deformation influence the use of viscoelastic rubber in such applications as shoe insoles to reduce impact force in running, or wrestling mats to reduce impact force in falls?

What is Poisson's ratio?

Solution Refer to the above analysis, in which deformation under transverse constraint is analyzed. Rubbery materials are much stiffer when compressed in a thin layer geometry than they are in shear or in simple tension; they are too stiff to perform the function of reducing impact. Compliant layers can be formed by corrugating the rubber to provide room for lateral expansion or by using an elastomeric foam, which typically has a Poisson's ratio near 0.

Corrugated rubber is used in shoe sneaker insoles and in vibration isolators for machinery.

  • Relation between Young's modulus and stiffness for continuously distributed springs

Foam is used in shoes and in wrestling mats. Practical example - aircraft sandwich panels.